INSTALLATION SPECIFICATIONS

Installation Specifications for Hangermate+ in Concrete and Supplementary Information

		J				Nomin	nal Anchor Diameter (inch)						
Anchor Pro	perty/Setting Information	Notation	Units	1/4	3	/8	3	/8	3/8	1/2			
Coupler thread	size (UNC)	-	in.	1/4- 20	3/8	-16	3/8	-16	3/8-16	1/2-13			
Coupler head st	yle	- 1	-	Internally Thread	Internall	y Thread	Externa	Thread	Internally Thread	Internally Thread			
Nominal anchor (screw anchor b	diameter pody)	da	in. (mm)	0.250 (6.4)	0.2 (6	0.250 (6.4)		250 .4)	0.375 (9.5)	0.375 (9.5)			
Nominal drill bit	diameter (ANSI)	dbit	in.	1/4	1	/4	1/4		3/8	3/8			
Minimum nomir	mum nominal embedment depth ² h _{nom} in. 1-5/8 1-5/8 2-1/2 (mm) (41) (41) (64)		1-5/8 (41)	2-1/2 (64)	2 (51)	2 (51)							
Minimum hole o	depth	h₀	in. (mm)	2 (51)	2 (51)	2-7/8 (73)	2 (51)	2-7/8 (73)	2-3/8 (60)	2-3/8 (60)			
Minimum concr	ete member thickness	hmin	in. (mm)	3-1/4 (83)	3-1/4 (83)	4 (102)	3-1/4 (83)	4 (102)	3-1/2 (89)	3-1/2 (89)			
Minimum edge	distance ³	Cmin	in. (mm)	1-1/2 (38)	1-1/2 (38)		1-1/2 (38)		$C_{min} = 1 - 1/2 (38)$ for $S_{min} \ge 3 (76)$;	$\begin{array}{l} {C_{min}=1\text{-}1/2\ (38)}\\ {for\ s_{min}\geq\ 3\ (76);} \end{array}$			
Minimum spaci	ng distance ³	Smin	in. (mm)	1-1/2 (38)	1- (3	1-1/2 1- (38) (1/2 8)	$S_{min} = 2 (51)$ for $C_{min} \ge 2 (51)$	$S_{min} = 2 (51)$ for $C_{min} \ge 2 (51)$			
Maximum impa	ct wrench power (torque)1	Timpact,max	ftlbf. (N-m)	150 (203)	150 (203)		150 (203)		300 (47)	300 (47)			
Maximum manu	ual installation torque	T _{inst,max}	ftlbf. (N-m)	19 ^[1] (26)	19 ^[1] (26)	25 (34)	19 ^[3] (26)	25 (34)	25 (34)	25 (34)			
	Wrench socket size	-	in.	3/8	1	/2	1.	/2	1/2	11/16			
Coupler Head	Max. head height	-	in.	33/64	43	/64	1-3	/16	1-3/16	13/16			
	Max. washer diameter	-	in.	1/2	21	/32	21	/32	21/32	31/32			
Effective tensile (screw anchor b	stress area pody)	Ase	in.² (mm²)	0.045 (28.8)	0.0	0.045 (28.8))45 3.8)	0.094 (60.7)	0.094 (60.7)			
Minimum specif	fied ultimate strength	f _{uta}	psi (N/mm²)	115,000 (793)	115 (75	,000 93)	115 (79	,000 93)	100,000 (690)	100,000 (690)			
Minimum specif	Minimum specified yield strength		psi (N/mm²)	92,000 (634)	92, (6	000 34)	92,000 (634)		80,000 (552)	80,000 (552)			

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m, 1 psi = 0.0069 N/mm² (MPa).

1. For installations into lightweight concrete, the max installation torgue, Tinstmax, is 18 ft.-lb for nominal 1/4-inch-diameter anchors (screw anchor body diameter) with an 1-5/8-inch nominal embedment.

2. The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor.

3. Additional combinations for minimum edge distance, cmm, and minimum spacing distance, smm, may be derived by linear interpolation between the given boundary values for the nominal 3/8-inch-diameter anchors (screw anchor body diameter).

Hangermate+ Anchor Detail in Concrete

Nomenclature

- d = Diameter of Anchor $<math>d_{bit} = Diameter of Drill Bit$
- Minimum Nominal Embedment hnom =
- h_{ef} = Effective Embedment
- $h_0 =$ Minimum Hole Depth
- lanch = Nominal Anchor Length

External Thread

Internally Threaded

ECHANICAL ANCHORS

Rod Hanging Anchor

®

CONCRETE HANGERMAT

INSTALLATION INSTRUCTIONS

Hangermate+ Installation Detail for Screw Anchors in the Soffit of Concrete over Steel Deck Floor and Roof Assemblies, 3-inch Deep Deck Profile^{1,2,3}

Hangermate+ Installation Detail for Screw Anchors in the Soffit of Concrete over Steel Deck Floor and Roof Assemblies, 1-1/2-inch Deep Deck Profile^{1,2,3}

ASI

REFERENCE DATA (ASD)

Ultimate Load Capacities for Hangermate+ in Normal-Weight Concrete^{1,2}

	Nominal	Minimum	Minimum Concrete Compressive Strength										
Nominal Anchor	Anchor Diameter (screw anchor body) in.	Nominal Embedment Depth in. (mm)	f'c = 2,500 psi (17.3 MPa)		f'c = 3,000 psi (20.7 MPa)		f'c = 4,000 psi (27.6 MPa)		f'c = 6,000 psi (41.4 MPa)		f'c = 8,000 psi (55.2 MPa)		
size in.			Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	Tension Ibs (kN)	Shear Ibs (kN)	
1/4	1/4	1-5/8 (41)	2,410 (10.7)	1,485 (6.6)	2,545 (11.3)	1,525 (6.8)	2,775 (12.3)	1,525 (6.8)	2,775 (12.3)	1,525 (6.8)	2,775 (12.3)	1,525 (6.8)	
2/0	1/4	1-5/8 (41)	2,410 (10.7)	1,555 (6.9)	2,545 (11.3)	1,565 (7.0)	2,775 (12.3)	1,565 (7.0)	2,775 (12.3)	1,565 (7.0)	2,775 (12.3)	1,565 (7.0)	
3/0	1/4	2-1/2 (64)	3,650 (16.2)	1,555 (6.9)	3,855 (17.1)	1,565 (7.0)	4,200 (18.7)	1,565 (7.0)	4,270 (19.0)	1,565 (7.0)	4,270 (19.0)	1,565 (7.0)	
3/8	3/8	2 (51)	3,670 (16.3)	1,985 (8.8)	4,020 (17.9)	2,010 (8.9)	4,645 (20.7)	2,010 (8.9)	4,725 (21.0)	2,010 (8.9)	5,455 (24.3)	2,010 (8.9)	
1/2	3/8	2 (51)	3,670 (16.3)	2,970 (13.2)	4,020 (17.9)	2,990 (13.3)	4,645 (20.7)	2,990 (13.3)	4,725 (21.0)	2,990 (13.3)	5,455 (24.3)	2,990 (13.3)	

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at a minimum at the time of installation.

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

Allowable Load Capacities for Hangermate+ in Normal-Weight Concrete^{1,2,3,4}

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities are calculated using an applied safety factor 4.0.

3. Allowable load capacities must be multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.

4. Linear interpolation may be used to determine allowable loads for intermediate embedments and compressive strengths.

Edge Distance - Tension (F_{NC})

Nomin	al Anchor Size (in)		1/4		3/8	1/2
Nomin (Scre	al Anchor Dia. (in) ew Anchor Body)	1/4	3/8	3/8	3/8	3/8
Nom	inal Embedment, hnom (in)	1-5/8	1-5/8	2-1/2	2	2
Minim	um Edge Distance, cmin (in)	1.50	1.50	1.50	1.50	1.50
	1-1/2	0.77	0.77	0.64	0.74	0.74
(1-3/4	0.83	0.83	0.67	0.79	0.79
che	2	0.88	0.88	0.71	0.84	0.84
e (in	2-1/4	0.94	0.94	0.75	0.89	0.89
anc	2-1/2	1.00	1.00	0.78	0.95	0.95
Dist	2-3/4	1.00	1.00	0.82	1.00	1.00
dge	3	1.00	1.00	0.86	1.00	1.00
Ē	3-1/2	1.00	1.00	0.93	1.00	1.00
	4	1.00	1.00	1.00	1.00	1.00

Edge	Distance	-	Shear	(F _{VC})

Nominal A	nchor Size (in)		1/4		3/8	1/2
Nominal A (Screw A	nchor Dia. (in) Inchor Body)	1/4	3/8	3/8	3/8	3/8
Nominal Emb	edment, hnom (in)	1-5/8	1-5/8	2-1/2	2	2
Minimum I Cr	Edge Distance, min (in)	1.50	1.50	1.50	1.50	1.50
	1-1/2	0.68	0.66	0.70	0.61	0.47
les)	1-3/4	0.79	0.77	0.82	0.72	0.55
inch	2	0.90	0.88	0.93	0.82	0.63
) eo	2-1/4	1.00	0.99	1.00	0.92	0.70
stan	2-1/2	1.00	1.00	1.00	1.00	0.78
e Di	2-3/4	1.00	1.00	1.00	1.00	0.86
Edg	3	1.00	1.00	1.00	1.00	0.94
	3-1/4	1.00	1.00	1.00	1.00	1.00

Spacing - Tension (F_{NS})

Nomir	nal Anchor Size (in)		1/4		3/8	1/2
Nominal (Scr	Anchor Diameter (in) ew Anchor Body)	1/4	3/8	3/8	3/8	3/8
Nominal	Embedment, hnom (in)	1-5/8	1-5/8	2-1/2	2	2
Minim	um Spacing, smin (in)	1-1/2	1-1/2 1-1/2 1-1/2		2	2
	1-1/2	0.73	0.73	0.66	-	-
	1-3/4	0.77	0.77	0.68	-	-
	2	0.80	0.80	0.70	0.77	0.77
(8)	2-1/4	0.83	0.83	0.72	0.80	0.80
inch	2-1/2	0.86	0.86	0.74	0.83	0.83
)) 9)	2-3/4	0.89	0.89	0.76	0.86	0.86
tan	3	0.92	0.92	0.78	0.89	0.89
<u>Dis</u>	3-1/2	0.99	0.99	0.82	0.94	0.94
cing	4	1.00	1.00	0.86	1.00	1.00
Spa	4-1/2	1.00	1.00	0.90	1.00	1.00
	5	1.00	1.00	0.94	1.00	1.00
	5-1/2	1.00	1.00	0.97	1.00	1.00
	6	1.00	1.00	1.00	1.00	1.00

Spacing - Shear (F_{VS})

Nomir	nal Anchor Size (in)		1/4		3/8	1/2
Nominal (Scr	l Anchor Diameter (in) rew Anchor Body)	1/4	3/8	3/8	3/8	3/8
Nominal	Embedment, hnom (in)	1-5/8	1-5/8	2-1/2	2	2
Minim	um Spacing, smin (in)	1-1/2	1-1/2	1-1/2	2	2
	1-1/2	0.61	0.61	0.62	-	-
	1-3/4	0.63	0.63	0.64	-	-
	2	0.65	0.65	0.66	0.64	0.60
	2-1/4	0.67	0.66	0.68	0.65	0.62
	2-1/2	0.69	0.68	0.69	0.67	0.63
	2-3/4	0.71	0.70	0.71	0.69	0.64
les)	3	0.73	0.72	0.73	0.70	0.66
inch	3-1/2	0.76	0.76	0.77	0.74	0.68
() 90	4	0.80	0.79	0.81	0.77	0.71
tan	4-1/2	0.84	0.83	0.85	0.81	0.73
Dis	5	0.88	0.87	0.89	0.84	0.76
cing	5-1/2	0.91	0.90	0.93	0.88	0.79
Spa	6	0.95	0.94	0.97	0.91	0.81
••	6-1/2	0.99	0.98	1.00	0.94	0.84
	7	1.00	1.00	1.00	0.98	0.86
	7-1/2	1.00	1.00	1.00	1.00	0.89
	8	1.00	1.00	1.00	1.00	0.92
	9	1.00	1.00	1.00	1.00	0.97
	10	1.00	1.00	1.00	1.00	1.00

REFERENCE DATA (SD)

Installation Specifications for Hangermate+ in Concrete and Supplementary Information^{1,2}

Anchor Property/Setting Information		Notation	Iluito			Nomin	al Anchor	Diameter	r (inch)	
Anchor Proj	perty/setung information	NULALIUII	UIIIIS	1/4	3	/8	3	/8	3/8	1/2
Coupler thread :	size (UNC)	-	in.	1/4- 20	3/8	8-16	3/8	-16	3/8-16	1/2-13
Coupler head st	yle	-	-	Internally Thread	Internal	y Thread	Externa	l Thread	Internally Thread	Internally Thread
Nominal anchor (screw anchor b	diameter oody)	da	in. (mm)	0.250 (6.4)	0.2 (6	250 .4)	0.2 (6	250 .4)	0.375 (9.5)	0.375 (9.5)
Nominal drill bit	diameter (ANSI)	dbit	in.	1/4	1.	/4	1.	/4	3/8	3/8
Minimum nomir	nal embedment depth⁴	h _{nom}	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-1/2 (64)	1-5/8 (41)	2-1/2 (64)	2 (51)	2 (51)
Effective embed	Iment	h _{ef}	in. (mm)	1.20 (30)	1.20 (30)	1.94 (49)	1.20 (30)	1.94 (49)	1.33 (33)	1.33 (33)
Minimum hole o	lepth	h₀	in. (mm)	2 (51)	2 (51)	2-7/8 (73)	2 (51)	2-7/8 (73)	2-3/8 (60)	2-3/8 (60)
Minimum concr	ete member thickness	h _{min}	in. (mm)	3-1/4 (83)	3-1/4 (83)	4 (102)	3-1/4 (83)	4 (102)	3-1/2 (89)	3-1/2 (89)
Minimum edge	Minimum edge distance ³		in. (mm)	1-1/2 (38)	1-1/2 (38)		1-1/2 (38)		$\begin{array}{l} c_{min} = 1 \text{-} 1 / 2 \; (38) \\ \text{for } s_{min} \geq \; 3 \; (76); \end{array}$	$\begin{array}{l} {C_{min}=1\text{-}1/2} \ (38) \\ {for} \ {S_{min}\geq \ 3} \ (76); \end{array}$
Minimum spacir	ng distance ³	Smin	in. (mm)	1-1/2 (38)	1-1/2 (38)		1- (3	1/2 8)	$\begin{array}{l} s_{\text{min}}=2 \ (51) \\ \text{for } c_{\text{min}} \geq \ 2 \ (51) \end{array}$	$\begin{array}{l} s_{\text{min}}=2 \ (51) \\ \text{for } c_{\text{min}} \geq \ 2 \ (51) \end{array}$
Nominal anchor	length ⁶	lanch	in.	1-5/8	1-5/8	2-1/2	1-5/8	2-1/2	2	2
Maximum impa	ct wrench power (torque)1	Timpact,max	ftlbf. (N-m)	150 (203)	1; (2)	50 03)	1; (2)	50 03)	300 (47)	300 (47)
Maximum manu	ual installation torque	T _{inst,max}	ftlbf. (N-m)	19 ^[3] (26)	19 ^[3] (26)	25 (34)	19 ^[3] (26)	25 (34)	25 (34)	25 (34)
	Wrench socket size	-	in.	3/8	1.	/2	1.	/2	1/2	11/16
Coupler Head	Max. head height	-	in.	33/64	43	/64	1-3	/16	1-3/16	13/16
	Max. washer diameter	-	in.	1/2	21	/32	21	/32	21/32	31/32
Effective tensile (screw anchor b	stress area oody)	Ase	in.² (mm²)	0.045 (28.8)	0.0)45 3.8)	0.0)45 3.8)	0.094 (60.7)	0.094 (60.7)
Minimum specified ultimate strength		f _{uta}	psi (N/mm²)	115,000 (793)	115 (79	,000 93)	115 (79	,000 93)	100,000 (690)	100,000 (690)
Minimum specif	fied yield strength	fy	psi (N/mm²)	92,000 (634)	92, (63	000 34)	92,000 (634)		80,000 (552)	80,000 (552)
Mean axial	Uncracked concrete	eta_{uncr}	lbf/in.	1,381,000	1,38	1,000	1,38	1,000	1,157,000	1,157,000
Stiffness ⁷	Cracked concrete	$eta_{ m cr}$	lbf/in.	318,000	318	,000	318	,000	330,000	330,000

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m, 1 psi = 0.0069 N/mm² (MPa).

1. The information presented in this table is used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

2. For installations through the soffit of steel deck assemblies into concrete, see the design information table for installation in the soffit of concrete-filled steel deck assemblies and the installation details in the soffit of concrete over steel deck for the applicable steel deck profile.

3. For installations into lightweight concrete, the max installation torque, T_{inst,max}, is 18 ft.-lb for nominal 1/4-inch-diameter anchors (screw anchor body diameter) with an 1-5/8-inch nominal embedment.

4. The embedment depth, h_{nom} , is measured from the outside surface of the concrete member to the embedded end of the anchor.

 Additional combinations for minimum edge distance, cmm, and minimum spacing distance, smin, may be derived by linear interpolation between the given boundary values for the nominal 3/8-inch-diameter anchors (screw anchor body diameter).

6. The listed anchor length is based on coupler head anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth. The nominal anchor length is measured from under the coupler head to the tip of the anchor.

7. Mean values shown, actual stiffness varies considerably depending on concrete strength, loading and geometry of application.

Tension and Shear Design Information for Hangermate+ Anchor is in Concrete^{1,2,9,12,13}

					Non	inal Anch	or Size (i	nch)	
Design Characteristic	Notation	Units	1/4	3/	/8	3/	/8	3/8	1/2
Anchor category	1, 2 or 3	-	1	1		1		1	1
Coupler thread size (UNC)	-		1/4- 20	3/8	-16	Note of the section o		3/8-16	1/2-13
Coupler head style	-		Internally Thread	Internally	/ Thread	IDE inal Anchor Size inal Anchor Size inal Anchor Size 3/8 1 3/8 6 External Thread 0.250 (6.4) 2-1/2 (6.4) 2-1/2 (6.4) 2-1/2 (10) 1.94 (30) 4,535 (20.2) 0.65 8-11 D.5.2) 4.3 6.1 (110) (156) 27 24 1.7 1.0 0.65 0.65 see Note 7 765 1,415 (3.4) (6.3) 0.65 0.65 ACI 318-11 D.3. 360 1,1700 (1.6) 2.62) 0.65		Internally Thread	Internally Thread
Nominal anchor diameter (screw anchor body)	da	in. (mm)	0.250 (6.4)	0.2 (6.	250 .4)	0.2 (6.	50 4)	0.375 (9.5)	0.375 (9.5)
Minimum nominal embedment depth4	hnom	in. (mm)	1-5/8 (41)	1-5/8 (41)	2-1/2 (64)	1-5/8 (41)	2-1/2 (64)	2 (51)	2 (51)
Effective embedment	hef	in. (mm)	1.20 (30)	1.20 (30)	1.94 (49)	1.20 (30)	1.94 (49)	1.33 (33)	1.33 (33)
	Steel Stre	ngth in Tens	sion (ACI 318-14 17	4.1 or AC	318-11	0.5.1)		-	
Steel strength in tension	N _{sa}	lb (kN)	4,535 (20.2)	4,5 (20	i35 1.2)	4,5 (20	35 .2)	8,730 (38.8)	8,730 (38.8)
Reduction factor for steel strength ^{3,4}	ϕ	-	0.65	0.	65	0.0	65	0.65	0.65
Conc	rete Breako	ut Strength	in Tension (ACI 318	Nominal Anchor Size (inch) 3/8 3/8 3/8 1 1 1 1 1 1 1 0 3/8-16 3/8-16 3/8-16 1/2 read Internally Thread External Thread Internally Thread Internaly Thread Internally Thread					
Critical edge distance (uncracked concrete)	Cac	in. (mm)	4.3 (110)	4.3 (110)	6.1 (156)	4.3 (110)	6.1 (156)	5.0 (127)	5.0 (127)
Effectiveness factor for uncracked concrete	Kuncr	-	27	27	24	27	24	30	30
Effectiveness factor for cracked concrete	Kcr	-	17	1	7	1	7	17	17
Modification factor for cracked and uncracked concrete ⁵	$\varPsi_{\rm c,N}$	-	1.0	1.	.0	1.	0	1.0	1.0
Reduction factor for concrete breakout strength ³	ϕ	-	0.65	0.0	65	0.0	65	0.65	0.65
Pullout Stren	gth in Tensio	on (Non-Sei	ismic Applications)	(ACI 318-1	4 17.4.3	or ACI 318	B-11 D.5.3	3)	
Characteristic pullout strength, uncracked concrete (2,500 psi)6.9	N _{p,uncr}	lb (kN)	See Note 7	See Note 7		See N	lote 7	See Note 7	See Note 7
Characteristic pullout strength, cracked concrete (2,500 psi) ^{6,9}	N _{p,cr}	lb (kN)	765 (3.4)	765 (3.4)	1,415 (6.3)	765 (3.4)	1,415 (6.3)	See Note 7	See Note 7
Reduction factor for pullout strength ³	ϕ	-	0.65	0.0	65	0.0	65	0.65	0.65
Pullout Streng	yth in Tensio	n for Seisn	nic Applications (AC	318-14 1	7.2.3.3 0	r ACI 318 -	11 D.3.3.	3)	
Characteristic pullout strength, seismic (2,500 psi) ^{68,9}	Np,eq	lb (kN)	360 (1.6)	360 (1.6)	1,170 (5.2)	360 (1.6)	1,170 (5.2)	900 (4.0)	900 (4.0)
Reduction factor for pullout strength ³	ϕ	-	0.65	0.	65	0.0	65	0.65	0.65
	Steel Stre	ength in Sh	ear (ACI 318-14 17.	5.1 or ACI	318-11 D	.6.1)			
Steel strength in shear ¹⁰	V_{sa}	lb (kN)	800 (3.6)	1,3 (6.	60 .1)	1,3 (6.	60 1)	1,295 (5.8)	1,295 (5.8)
Reduction factor for steel strength ^{3,4}	ϕ	-	0.60	0.	60	0.0	60	0.60	0.60
Steel Streng	th in Shear	For Seismi	c Applications (ACI 3	818-14 17	.2.3.3 or /	ACI 318-1	I D.3.3.3)		
Steel strength in shear ¹⁰	Vsa,eq	lb (kN)	600 (2.7)	69 (3	95 .1)	69 (3	95 1)	800 (3.6)	800 (3.6)
Reduction factor for steel strength ^{3,4}	ϕ	-	0.60	0.	60	0.0	60	0.60	0.60
Con	crete Breako	out Strengtl	h in Shear (ACI 318-	14 17.5.2	or ACI 31	8-11 D.6.	2)		
Load bearing length of anchor	le	in. (mm)	1.20 (30)	1.20 (30)	1.94 (49)	1.20 (30)	1.94 (49)	1.33 (33)	1.33 (33)
Reduction factor for concrete breakout strength ^{3,4}	ϕ	-	0.70	0.	70	0.	70	0.70	0.70
	Pryout Str	ength in Sh	near (ACI 318-14 17.	5.3 or AC	318-11).6.3)			
Coefficient for pryout strength	Kcp	-	1	1	1	1	1	1	1
Reduction factor for pryout strength ^{3,4}	ϕ	-	0.70	0.1	70	0.	70	0.70	0.70
For SI: 1 inch = 25.4 mm; 1 ksi = 6.894 N/mm ² ; 1 ft-lb = 1.3 1. The data in this table is intended to be used with the desi	356 N-m; 1 lb = ign provisions o	= 0.0044 kN. f ACI 318-14	Chapter 17 or ACI 318-1	1 Appendix	D, as applic	able; for anc	hors resistir	ig seismic load combinat	ions the additional

requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, shall apply.

2. Installation must comply with manufacturer's published installation instructions and details.

2. All values of ϕ were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2. If the load combinations of ACI 318-11 Appendix C are used, then the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that complies with ACI 318-14 Chapter 17 or ACI 318-11 Appendix D requirements for Condition A, see ACI 318-14 T.3.3(c) or ACI 318-11 Section 0.4.3(c), as applicable for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318-11 Section 9.2. If the load combinations of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D requirements for Condition A, see ACI 318-14 T.3.3(c) or ACI 318-11 Section 0.4.3(c), as applicable for the appropriate ϕ factor when the load combinations of IBC Section 1605.2, ACI 318-11 Section 9.2 are used.

4. The anchors are considered a brittle steel elements as defined by ACI 318-14 2.3 or ACI 318-11 D.1.

5. Select the appropriate effectiveness factor for cracked concrete (kar) or uncracked concrete (kuncr) and use $\psi_{C,N} = 1.0$.

6. For calculation of N_{IP} see Section 4.1.4 of this report. The characteristic pullout strength for concrete compressive strengths greater than 2,500 psi for 1/4-inch-diameter anchors (screw anchor body diameter) may be increased by multiplying the value in the table by (f'c / 2,500)⁸³ for psi or (f'c / 17.2)⁹³ for MPa. The characteristic pullout strength for concrete compressive strengths greater than 2,500 psi for 3/8-inch-diameter anchors (screw anchor body diameter) may be increased by multiplying the value in the table by (f'c / 2,500)⁸³ for psi or (f'c / 17.2)⁹³ for MPa.

7. Pullout strength does not control design of indicated anchors and does not need to be calculated for indicated anchor size and embedment.

8. Reported values for characteristic pullout strength in tension for seismic applications are based on test results per ACI 355.2, Section 9.5.

9. Anchors are permitted in the topside of concrete-filled steel deck assemblies in accordance with Figure 4 of this report.

10. Reported values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and must be used for design in lieu of the calculated results using equation 17.5.1.2b of ACI 318-14 or equation D-29 in ACI 318-11 D.6.1.2.

11. Reported values for steel strength in shear are for seismic applications and based on tests in accordance with ACI 355.2, Section 9.6.

12. Anchors are permitted to be used in lightweight concrete in provided the modification factor λ_a equal to 0.8 λ is applied to all values of \sqrt{f} affecting Nn.

13. Hangermate+ shear values are for threaded rod or steel inserts with and ultimate strength, $F_{\nu} \ge 125$ ksi; threaded rod or steel inserts with an F_{ν} less than 125 ksi are allowed provided the steel strength shear values are multiplied by the ratio of F_{ν} (ksi) of the steel insert and 125 ksi.

Tension and Shear Design Information for Hangermate+ Anchor in the Soffit (Through the Underside) of Concrete-Filled Steel Deck Assemblies^{1,2,3,4,5,6,9}

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1/2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1/2-13
Nominal anchor diameter (screw anchor body) da in. (mm) 0.250 (6.4) 0.250 (6.4) 0.250 (6.4) 0.375 (6.4) 0.375 (9.5) Minimum nominal embedment depth ⁴ hoom in. (mm) 1.578 (41) 2.1/2 (41) 1.578 (64) 2.1/2 (41) 1.578 (64) 2.1/2 (41) 1.94 (41) 1.33 (30) 1.33 (30) Effective embedment her in. (mm) 1.20 (30) 1.20 (30) 1.94 (30) 1.20 (49) 1.33 (30) 1.33 (33) Minimum concrete member thickness ⁷ her.detxtell lb 5.1/2 (140) <	ally Thread
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.375 (9.5)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 (51)
Hangermate+ Anchors Installed into Minimum 3-7/8-inch-wide Deck Flute (See	1.33 (33)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Pullout strength, uncracked concrete (3,000 ps) N _{p,deck,uncr} Ib (kN) 1,430 (6.4) 1,430 (6.4) 2,555 (1.1.4) 1,430 (6.4) 2,555 (1.1.4) 2,255 (1.1.4) 2,255 (1.1.4) 2,275 (1.0.1) Pullout strength, cracked concrete (3,000 ps) N _{p,deck,er} Ib (kN) 615 (2.7) 615 (2.7) 1,115 (5.0) 615 (2.7) 1,115 (5.0) 1,205 (4.1) 1,200 (4.1) 8890 (4.0) Pullout strength, seismic (3,000 ps) N _{p,deck,er} Ib (kN) 290 (1.3) 920 (1.3) 290 (4.1) 920 (4.1) 890 (4.0) 890 (4.0) Reduction factor for steel strength ^{3.4} ϕ - 0.65 $0.5 - $ $0.5 - $ $0.65 - $ $0.65 - $ $0.65 - $ $0.65 - $ $0.65 - $ $0.65 - $ $0.65 - $ $0.65 - $ $0.65 - $ $0.65 - $ $0.65 - $ $0.65 - $ $0.65 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $ $0.6 - $	5-1/2 (140)
Pullout strength, cracked concrete (3,000 psi) $N_{p,deck,cer}$ $lb_{(kN)}$ $615_{(2.7)}$ $1,115_{(5.0)}$ $1,115_{(5.0)}$ $1,129_{(5.1)}$ $1,290_{(5.1)}$ Pullout strength, seismic (3,000 psi) $N_{p,deck,eq}$ $lb_{(kN)}$ $290_{(1.3)}$ $290_{(1.3)}$ $290_{(1.3)}$ $290_{(1.3)}$ $920_{(4.1)}$ $890_{(4.0)}$ Reduction factor for steel strength ^{3.4} ϕ $ 0.655$ $0.5- $ $0.5- $ 0.65 0.65 Steel strength in shear, seismic $V_{sa,deck}$ $lb_{(kN)}$ $1,205_{(5.4)}$ $1,205_{(5.4)}$ $1,205_{(5.4)}$ $1,360_{(6.0)}$ (6.0) Steel strength in shear, seismic $V_{sa,deck,eq}$ $lb_{(kN)}$ $615_{(2.7)}$ $615_{(2.7)}$ $61_{(2.7)}$ $965_{(4.3)}$ (4.3) Reduction factor for steel strength ^{3.4} ϕ $ 0.60$ $0 $ $0.5- $ $0.5- $ $965_{(4.3)}$ (4.3) Reduction factor for steel strength ^{3.4} ϕ $ 0.60$ $0 $ $0 $ 0.60 $0 $ 0.60 $0 $ 0.60 $0 $ Minimum concrete member thickness ⁷ $h_{min,deck,tetal}$ $lb_{(kN)}$ $1,430_{(102)}$ $1,430_{(12)}$ $1,430_{(2.975}$ $2,075_{(6.4)}$ $1,440_{(102)}$ Pullout strength, uncracked concrete (3,000 $N_{p,deck,unr}$ $lb_{(kN)}$ $1,430_{(6.4)}$ $2,075_{(6.4)}$ $2,075_{(6.4)}$ $1,440_{(6.4)}$	2,275 (10.1)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,290 (5.1)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	890 (4.0)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.65
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,360 (6.0)
$\begin{tabular}{ c c c c c c c } \hline Reduction factor for steel strength^{3.4} & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	965 (4.3)
Hangermate: Anchors Installed into Minimum 1-3/4-inch-wide Ueck Flute (See Flute	0.60
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Pullout strength, uncracked concrete (3,000 psi) Np,deck,uncr Ib 1,430 1,430 2,075 1,430 2,075 1,440 (kN) (6.4) (6.4) (9.2) (6.4) (9.2) (6.4) (9.2)	4 (102)
	1,440 (6.4)
Pullout strength, cracked concrete (3,000 psi) $N_{p,deck,cr}$ Ib 615 615 910 615 910 815 (kN) (2.7) (2.7) (4.0) (2.7) (4.0) (3.6)	815 (3.6)
Pullout strength, seismic (3,000 psi) N _{p,deck,eq} Ib (kN) 290 (1.3) 290 (1.3) 750 (3.3) 290 (1.3) 750 (3.3) 565 (3.3)	565 (2.5)
Reduction factor for steel strength* ϕ - 0.65 0.65 0.65 0.65	0.65
Steel strength in shear Vsa,deck Ib (kN) 815 (3.6) 815 (3.6) 815 (3.6) 815 (3.6) 1,110 (4.9)	1,110 (4.9)
Steel strength in shear, seismic V _{sa,deck,eq} Ib (kN) 415 (1.8) 415 (1.8) 415 (1.8) 790 (3.5)	790 (3.5)
Reduction factor for steel strength ⁸ ϕ - 0.60 0.60 0.60 0.60	0.60

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m, 1 psi = 0.0069 N/mm² (MPa).

1. Installation must comply with manufacturer's published installation instructions and details.

Values for N_{p.dexk} and N_{p.dexk,or} are for sand-lightweight concrete (f'c, min = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.4.2 or ACI 318 D.5.2, as applicable, is not required for anchors installed in the deck soffit (through underside).

3. Values for $N_{\text{p,deck,eq}}$ are applicable for seismic loading; see Section 4.1.8.2 of this report.

4. For all design cases \(\mathcal{Y}_{cP} = 1.0\). The characteristic pullout strength for concrete compressive strengths greater than 3,000 psi for 1/4-inch-diameter anchors (screw anchor body diameter) may be increased by multiplying the value in the table by (f'c / 3,000)⁰³ for psi or (f'c / 17.2)⁰³ for MPa. The characteristic pullout strength for concrete compressive strengths greater than 3,000 psi for 3/8-inch-diameter anchors (screw anchor body diameter) may be increased by multiplying the value in the table by (f'c / 3,000)⁰⁵ for psi or (f'c / 17.2)⁰⁵ for MPa.

5. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.

6. Values of Vsa.deck.eq are for sand-lightweight concrete and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, and the pryout capacity in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, are not required for anchors installed in the soffit (through underside).

7. The minimum concrete member thickness, hmin.deek.total, is the minimum overall thickness of the concrete-filled steel deck (depth and topping thickness).

Hangermate+ shear values are for threaded rod or steel inserts with and ultimate strength, F_u ≥ 125 ksi; threaded rod or steel inserts with an F_u less than 125 ksi are allowed provided the steel strength shear values are multiplied by the ratio of F_u (ksi) of the steel insert and 125 ksi.

Factored Resistance Strength (ØNn And ØVn) Calculated In Accordance With ACI 318-14 Chapter 17:

- 1- Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight
 - concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions: c_{at} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$). - c_{a2} is greater than or equal to 1.5 times c_{a1} .
- 2- Calculations were performed according to ACI 318-14 Chapter 17. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, her, for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.
- Strength reduction factors (ø) were based on ACI 318-14 Section 5.3 for load combinations. 3-Condition B is assumed.
- 4- Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- For designs that include combined tension and shear, the interaction of tension and shear loads must be 5calculated in accordance with ACI 318-14 Chapter 17.
- 6-Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318-14 Chapter 17. For other design conditions including seismic considerations please see ACI 318-14 Chapter 17.
- 7- Hangermate+ shear values are for threaded rod or steel inserts with and ultimate strength, $F_u \ge 125$ ksi; threaded rod or steel inserts with an Fu less than 125 ksi are allowed provided the steel strength shear values are multiplied by the ratio of Fu (ksi) of the steel insert and 125 ksi.

10110101			ign oao	ingtin on										
Nomin	ol Anohor Di	omotor					Minimum Concrete Compressive Strength							
	al Alicilor Di	ameter	Nominal Embed.	Nominal Embed.	f'c = 2,	500 psi	f'c = 3,	000 psi	f'c = 4,	000 psi	f'c = 6,	000 psi	f'c = 8,	000 p
Coupler Thread Size (UNC)	Coupler Head Style	Screw Anchor Body	Depth h _{nom} (in.)	Depth hef (in.)	øNn Tension (Ibs.)	øVn Shear (lbs.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)	øNn Tension (Ibs.)	ø Sh (lt
1/4 - 20	Internal Thread	1/4	1-5/8	1.20	495	515	525	515	575	515	645	515	705	5
3/8 - 16	Internal Thread	1/4	1-5/8 2-1/2	1.20 1.94	495 920	780 815	525 970	815 815	575 1,060	815 815	645 1,195	815 815	705 1,305	8 [.] 8
	External		1-5/8	1.20	495	780	525	815	575	815	645	815	705	8

Tension and Shear Design Strength Cracked Concrete

2/0 16	External	1//	1-5/8	1.20	495	780	525	815	575	815	645
3/0 - 10	Thread	1/4	2-1/2	1.94	920	815	970	815	1,060	815	1,195
3/8 - 16	Internal Thread	3/8	2	1.33	845	775	930	775	1,070	775	1,315
1/2 - 13	Internal Thread	3/8	2	1.33	845	915	930	1,000	1,070	1,140	1,315

🔲 - Anchor Pullout/Pryout Strength Controls 🔲 - Concrete Breakout Strength Controls 📕 - Steel Strength Controls

Tension and Shear Design Strength Uncracked Concrete

Nominal Anchor Diameter		Nominal Embed.	Nominal Embed.	Minimum Concrete Compressive Strength										
				f'c = 2,500 psi		f'c = 3,000 psi		f'c = 4,000 psi		f'c = 6,000 psi		f'c = 8,000 psi		
Coupler Thread Size (UNC)	Coupler Head Style	Screw Anchor Body	Depth hnorm (in.)	Depth hef (in.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)	øNn Tension (lbs.)	øVn Shear (Ibs.)	øNn Tension (Ibs.)	øVn Shear (Ibs.)
1/4 - 20	Internal Thread	1/4	1-5/8	1.20	1,155	515	1,265	515	1,460	515	1,785	515	2,065	515
2/0 10	Internal	1/4	1-5/8	1.20	1,155	815	1,265	815	1,460	815	1,785	815	2,065	815
3/0 - 10	Thread	1/4	2-1/2	1.94	2,110	815	2,310	815	2,665	815	2,950	815	2,950	815
2/0 16	External	1/4	1-5/8	1.20	1,155	815	1,265	815	1,460	815	1,785	815	2,065	815
3/0 - 10	Thread	1/4	2-1/2	1.94	2,110	815	2,310	815	2,665	815	2,950	815	2,950	815
3/8 - 16	Internal Thread	3/8	2	1.33	1,495	775	1,640	775	1,890	775	2,315	775	2,675	775
1/2 - 13	Internal Thread	3/8	2	1.33	1,495	1,140	1,640	1,140	1,890	1,140	2,315	1,140	2,675	1,140
- Anchor	Pullout/Pryout	Strength Con	itrols 🔲 - Cor	ncrete Breakou	it Strength Co	ontrols 🔲 - S	Steel Strength	Controls						

si /n

ear s.)

815

1,140

 (\mathfrak{d})

1,305

1,515

1,515

1,140

ANCHORS

HANICAL

Catalog Number	Screw Size	Hang	Rod Size	Socket Size	Box Qty.	Ctn. Qty.	20V Max* S	20V Max* Impact Wrench		
							DCH273P2DH0 1" L-Shape	DCH133M2 1" D-Handle	DCH293R2 1-1/8" L-Shape w/E-Clutch"	DCF887D2 1/4" Impact Driver
							Carbide Bits			Hangermate+ Driver
							=			
				1						
Hangermat	e+ Internal '	Thread	5		وتترفي فيرفي					
Hangermat	e+ Internal '	Thread Vertical	1/4"	3/8"	25	125		DW5517		PFM1491050
Hangermat PFM2211100 PFM2211200	e+ Internal ' 1/4" x 1-5/8" 1/4" x 1-5/8"	Thread Vertical Vertical	1/4" 3/8"	3/8" 1/2"	25 25	125 125		DW5517 DW5517		PFM1491050 PFM1491000
Hangermat PFM2211100 PFM2211200 PFM2211250	e+ Internal ' 1/4" x 1-5/8" 1/4" x 1-5/8" 1/4" x 2-1/2"	Thread Vertical Vertical Vertical	1/4" 3/8" 3/8"	3/8" 1/2" 1/2"	25 25 25 25	125 125 125		DW5517 DW5517 DW5517		PFM1491050 PFM1491000 PFM1491000
Hangermat PFM2211100 PFM2211200 PFM2211250 PFM2211260	e+ Internal ' 1/4" x 1-5/8" 1/4" x 1-5/8" 1/4" x 2-1/2" 3/8" x 1-5/8"	Thread Vertical Vertical Vertical Vertical	1/4" 3/8" 3/8" 3/8"	3/8" 1/2" 1/2" 1/2"	25 25 25 25 25 25	125 125 125 125		DW5517 DW5517 DW5517 DW5527		PFM1491050 PFM1491000 PFM1491000 PFM1491000
Hangermat PFM2211100 PFM2211200 PFM2211250 PFM2211260 PFM2211270	e+ Internal 1/4" x 1-5/8" 1/4" x 1-5/8" 1/4" x 2-1/2" 3/8" x 1-5/8" 3/8" x 2"	Thread Vertical Vertical Vertical Vertical Vertical	1/4" 3/8" 3/8" 3/8" 3/8"	3/8" 1/2" 1/2" 1/2" 1/2"	25 25 25 25 25 25 25 25	125 125 125 125 125 125		DW5517 DW5517 DW5517 DW5527 DW5527		PFM1491050 PFM1491000 PFM1491000 PFM1491000 PFM1491000
Hangermat PFM2211100 PFM2211200 PFM2211250 PFM2211260 PFM2211270 PFM2211280	e+ Internal 1/4" x 1-5/8" 1/4" x 1-5/8" 1/4" x 2-1/2" 3/8" x 1-5/8" 3/8" x 2" 3/8" x 2"	Thread Vertical Vertical Vertical Vertical Vertical Vertical	1/4" 3/8" 3/8" 3/8" 3/8" 1/2"	3/8" 1/2" 1/2" 1/2" 1/2" 1/2" 1/2"	25 25 25 25 25 25 25 20	125 125 125 125 125 125 100		DW5517 DW5517 DW5517 DW5527 DW5527 DW5527 DW5527		PFM149105 PFM149100 PFM149100 PFM149100 PFM149100 07198
Hangermat PFM2211100 PFM2211200 PFM2211250 PFM2211260 PFM2211270 PFM2211280 Hangermat	e+ Internal 1/4" x 1-5/8" 1/4" x 1-5/8" 1/4" x 2-1/2" 3/8" x 1-5/8" 3/8" x 2" 3/8" x 2" e+ External	Thread Vertical Vertical Vertical Vertical Vertical Vertical Thread	1/4" 3/8" 3/8" 3/8" 3/8" 1/2"	3/8" 1/2" 1/2" 1/2" 1/2" 1/2" 1/1/6"	25 25 25 25 25 25 20	125 125 125 125 125 125 100		DW5517 DW5517 DW5517 DW5527 DW5527 DW5527 DW5527		PFM149105 PFM149100 PFM149100 PFM149100 PFM149100 07198
Hangermat PFM2211100 PFM2211200 PFM2211250 PFM2211260 PFM2211270 PFM2211280 Hangermat PFM1421000	e+ Internal 1/4" x 1-5/8" 1/4" x 1-5/8" 1/4" x 2-1/2" 3/8" x 1-5/8" 3/8" x 2" 3/8" x 2" e+ External 1/4" x 1-5/8"	Thread Vertical Vertical Vertical Vertical Vertical Thread Vertical	1/4" 3/8" 3/8" 3/8" 3/8" 1/2"	3/8" 1/2" 1/2" 1/2" 1/2" 1/2" 11/16"	25 25 25 25 25 25 20 25 20	125 125 125 125 125 125 100		DW5517 DW5517 DW5517 DW5527 DW5527 DW5527 DW5527		PFM1491050 PFM1491000 PFM1491000 PFM1491000 07198 DWMT19052